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SUMMARY
In this paper, a neural network (NN)-based tracking controller is proposed for a general class of type
(m,s) wheeled mobile manipulators (WMMs) subjected to model uncertainties with prescribed tran-
sient and steady-state performance specifications. First, an input–output model of WMMs is derived
by introducing proper output equations. Then, the prescribed performance technique is employed
to propose a proportional integral derivative trajectory tracking controller for WMMs to ensure
that the tracking errors converge to a smaller, arbitrary ultimate bound with a predefined maximum
overshoot/undershoot and convergence speed. The learning capabilities of multilayer NNs are incor-
porated into the controller to approximate the uncertain nonlinear dynamics of the robot. An adaptive
saturation-type controller is utilized to compensate NN estimation errors and external disturbances.
A Lyapunov-based stability analysis is used to demonstrate that the tracking errors are uniformly
ultimately bounded and converge to a small neighborhood of zero with a guaranteed prescribed per-
formance. Numerical computer simulations are presented to show the effectiveness of the proposed
controller.

KEYWORDS: Adaptive robust control; Model uncertainty; Multilayer neural networks; Prescribed
performance function; Trajectory tracking; Wheeled mobile manipulators.

1. Introduction
Recent decades have witnessed a growing interest in the motion control of wheeled mobile manipu-
lators (WMMs) because of the existence of high nonlinearities, coupling, and interaction between the
robot manipulator and the mobile platform. This challenging nature of WMMs demands very high
performance requirements from the control engineering viewpoint. A type (m,s) mobile manipulator
refers to a robotic arm mounted on a type (m,s) mobile platform where m and s denote the mobility
and steerability of the mobile platform. The WMM mobility lets the robot manipulate objects in an
infinite workspace compared with a fixed robotic manipulator. In recent years, many control strate-
gies have been proposed for the motion control of WMMs.1–20 The modeling, coordinated control,
and stability of mobile manipulators have been addressed previously1 using the feedback lineariza-
tion technique. The internal and zero dynamics stability of WMMs has been investigated previously.1

Since an exact modeling of WMMs is a difficult task among many robotic systems, they suffer from

∗ Corresponding author. E-mail: khoshnam.shojaee@gmail.com

https://doi.org/10.1017/S0263574719000365
https://orcid.org/0000-0003-1799-2141
mailto:kazemy@tafreshu.ac.ir
mailto:khoshnam.shojaee@gmail.com


www.manaraa.com

1938 Adaptive neural control of mobile manipulators

a high degree of uncertainties. For this purpose, many researchers often employ robust and adap-
tive control approaches for their motion control.2–9 However, the classic adaptive and robust control
methods always require the linear-in-parameter assumption of the dynamic model. Toward this end,
the artificial intelligence methods, including fuzzy and neural networks, have been utilized repeat-
edly in the literature10–16 for the motion control of WMMs. For example, Lin and Goldenberg10

have addressed the neural network (NN) control of mobile manipulators originally. An adaptive neu-
ral fuzzy controller was proposed for multiple uncertain constrained nonholonomic WMMs.11 Xu
et al.12 proposed a robust NN-based sliding mode controller for omnidirectional WMMs. A decen-
tralized adaptive fuzzy tracking controller has been proposed in ref. [13] for unicycle-type WMMs.
A hybrid sliding mode fuzzy NN controller for mobile manipulators is presented in ref. [14]. A con-
strained model predictive control technique was employed in the design of tracking controllers for
WMMs in ref. [15]. More recently, the cooperative and teleoperation control problems of networked
mobile manipulators have been studied in refs. [17–20]. However, one main drawback of all the
aforementioned control approaches is the unpredictable transient behavior of system response due
to the online adaptation in adaptive and NN control.1–20 Therefore, the design of an approximation-
based tracking controller with a guaranteed prescribed transient and steady-state performance is of
a great importance. To address this problem, one of the best available strategies is the prescribed
performance function (PPF), which has been originally introduced in ref. [21] and its applications
are reported in refs. [22–25].

To the best of our knowledge, there exist limited works addressing the design of tracking con-
trollers for WMMs with a guaranteed prescribed performance. Moreover, almost all the previous
controllers are only applicable to a special type of mobile manipulators with a unicycle-type or
omnidirectional mobile platform. Compared with the current state of the art, the main contributions
of this paper are listed as follows:

(i) A neural adaptive robust input–output feedback linearizing proportional integral derivative
(PID) controller is proposed for the general representation of type (m,s) mobile manipulators by
introducing a proper set of output equations, while the previous works, including refs. [1–20],
have been only devoted to a special type of WMMs.

(ii) In contrast to previous works,1–20 a prescribed maximum overshoot/undershoot, convergence
rate, and final tracking accuracy in the transient and steady-state behavior of the WMM control
system are taken into account.

(iii) Since the precise modeling and derivation of a regression matrix are impossible for the gen-
eral formulation of type (m,s) WMMs, a multilayer NN (MLNN) is utilized to effectively
compensate the uncertain nonlinear dynamics of the robot. Then, the NN approximation error
and external disturbances are efficiently compensated by an adaptive saturation-type robust
controller.

The remainder of this article is presented in the following order. Section 2 explains the WMM
control problem formulation and some mathematical preliminaries. Then, a neural adaptive input–
output feedback linearization controller is proposed in Section 3. Afterward, numerical simulations
are illustrated in Section 4 to evaluate the performance of tracking controller. In the last section,
concluding remarks are given.

2. Problem Formulation

2.1. Kinematic and dynamic models of WMMs
Consider a general class of n-link WMMs with mobility m and steerability s, which are called type
(m,s) WMMs.26–35 According to ref. [33], mobile platforms are classified based on their mobility
and steerability, which are also reviewed in ref. [32] and completely defined in refs. [33, 34]. The
kinematic mobility of a robot chassis is its ability to directly move in the environment, which quanti-
fies the degrees of controllable freedom based on changes to the wheel velocity and is limited to the
range 1 ≤ m ≤ 3. A basic constraint limiting the mobility is the rule that every wheel must satisfy its
sliding constraint. Steerability is the number of conventional centered orientable wheels that can be
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Fig. 1. Planar configuration of a general type (m,s) WMM.

oriented independently to steer the mobile platform and is limited to 0 ≤ s ≤ 2. The sum of mobility
m and steerability s is called maneuverability, which defines the overall degrees of freedom that a
mobile robot can manipulate.34 The motion equations of a type (m,s) WMM are given by:

q̇v = G(ϕ, γ )μ(t), (1)

μ(t) = X(qv)υ(t), (2)

Ma(q)v̇(t) + Ca(q, q̇)v(t) + τ da(t, v) = Ba(q)τ a(t), (3)

τ da(t, v) = Dav(t) + Dcsgn(v) + τ d(t), (4)

where Ma, Ca, Da, and Ba are given by

Ma(q) =
[

Mvv Mvr

Mrv Mrr

]
, Ca(q, q̇) =

[
Cvv Cvr

Crv Crr

]
, Da =

[
Dv 0
0 Dr

]
, Ba(q) =

[
Bv(qv) 0

0 In

]
, (5)

where q = [qT
v , qT

r ]T ∈ �n+s+3 is the augmented state vector; qv = [ζ , ϕ, γ ]T ∈ �s+3 and qr ∈ �n

represent the generalized coordinates of the mobile platform and n-link manipulator, respectively;
ζ = [xo, yo]T denotes the coordinates of a reference point Po on the mobile platform; ϕ is the heading
angle according to Fig. 1; γ = [γ 1T , γ 2T ]T ∈ �s represents the steering coordinates of independent
steering wheels; G(ϕ, γ ) ∈ �(s+3)×(m+s) is the kinematic matrix; and μ(t) = [ωT

m(t), ωT
s (t)] T ∈ �m+s

is a vector of angular velocities of robot wheels. The vectors ωm(t) ∈ �m and ωs(t) ∈ �s are related
to velocities of mobility and steering coordinates of the mobile platform through the kinematic
matrix G(ϕ, γ ), respectively. The velocity vector μ(t) is transformed to a pseudo-velocity vec-
tor υ(t) ∈ �m+s by the transformation matrix X(qv) ∈ �(m+s)×(m+s). The vector v = [υT , q̇T

r ]T ∈ �p

includes system velocity signals, where p = m + s + n. Ma(q) ∈ �p×p is a symmetric positive-
definite inertia matrix of the mobile manipulator; Ca(q, q̇) ∈ �p×p is the centripetal and Coriolis
matrix; Bv(qv) ∈ �(m+s)×(m+s) is the input transformation matrix; Da ∈ �p×p stands for viscous fric-
tion and damping coefficients matrix; and Dc ∈ �p×p represents Coulomb friction matrix. The
term τ d(t) = [τ T

dv, τ T
dr]T ∈ �p denotes bounded time-varying disturbances and unmodeled dynamics.
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τ a = [τ T
v , τ T

r ]T ∈ �p denotes the torque input vector of the mobile manipulator. The kinematic
models (1) and (2) and dynamic Eq. (3) are integrated into the following state space representation:

ẋ =

f(x)︷ ︸︸ ︷[
H(qv) v

0

]
+

g(x)︷ ︸︸ ︷[
0

M−1
a (q)Ba(q)

]
τ a +

ξ(x)︷ ︸︸ ︷[
0

−M−1
a (q)Ca(q, q̇)v − M−1

a (q)Dav

]

+
[

0

−M−1
a (q)Dc sgn(v) − M−1

a (q)τ d(t)

]
︸ ︷︷ ︸

η(t,x)

,

(6)

where x = [qT , vT ]T ∈ �p+n+s+3 represents the state vector; f (x) ∈ �p+n+s+3, g(x) ∈ �(p+n+s+3)×p,
and ξ(x), ζ (x) ∈ �p+n+s+3 are smooth vector fields where the kinematic matrix H(qv) is defined as
follows:

H(qv) =
[

G(ϕ, γ )X(qv) 0
0 In

]
, (7)

G(ϕ, γ ) =
⎡
⎢⎣RT(ϕ)Q(γ ) 0

bT(γ ) 0
0 Is

⎤
⎥⎦, (8)

where the kinematic matrix Q(γ ) ∈ �2×m and the vector b(γ ) ∈ �m may be extracted from Table I of
ref. [32] for a type (m,s) mobile platform.

2.2. Input–output model of type (m,s) WMMs
In this section, a second-order input–output model is developed to solve the tracking control of
WMMs. Motivated by the works in refs. [1, 32], the following smooth epimorphism transformation
is introduced to develop the input–output model:

y = h(q) =
⎡
⎢⎣ ζ + RT(ϕ)d(�dj, θdj, γ 2)

γ 1

qm

⎤
⎥⎦, j = 1, 2, . . . , n, (9)

where d(�dj, θdj, γ 2) ∈ �2 is a vector representing the coordinates of a virtual reference point PR =
(xR, yR) in the front of the WMM in the body-fixed frame, which is given by

d =
[

xb +
n∑

j=1
�dj cos

(
γ +

j∑
k=1

θdk

)
yb +

n∑
j=1

�dj sin
(
γ +

j∑
k=1

θdk

)]T

, (10)

and R(•) ∈ �2×2 is a rotation matrix between earth-fixed frame {OE, XE, YE} and body-fixed frame
{OB, XB, YB}; �dj and θdk specify the desired configuration of n-link manipulator associated with the
mobile manipulator, according to Fig. 1; and (xb, yb) is the coordinates of the arm base on the WMM.
In addition, the steering variables γ 1 ∈ �m+s−2 and γ 2 ∈ �2−m can be extracted from Table 2 of ref.
[32] for a type (m,s) mobile platform. From the time derivative of the output equation y ∈ �p in (9)
and replacing (1) and (2), one gets

ẏ = Lf h + Lξ h + Lηh + (
Lgh

)
τ a = ∂h(q)

∂q
H(qv)︸ ︷︷ ︸

J(q)

v(t), (11)

where Lf h(x) = ∇h(x)f , Lgh(x) = ∇h(x)g, Lξ h(x) = ∇h(x)ξ , and Lηh(x) = ∇h(x)η show the Lie
derivatives of h along the direction of the vectors f , g, ξ , and η, respectively; ∇h(x) represents the
gradient of h with respect to x. Since ẏ in (11) is not related to the actuator input, we differentiate
(11) once again to obtain the following input–output model:
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ÿ = L2
f h(x) + Lξ Lfh(x) + LηLfh(x) + LgLfh(x)τ a

= (∂(J(q)v)/∂q) H(qv)v + D(x)τ a + Lξ Lfh(x) + LηLfh(x),
(12)

where

L2
f h(x) = (∂(J(q)v)/∂q) H(qv)v,

Lξ Lf h(x) = −J(q)M−1
a (q)Ca(q, q̇)v − J(q)M−1

a (q)Dav,

LηLfh(x) = −J(q)M−1
a (q)Dcsgn(v) − J(q)M−1

a (q)τ d(t),

D(x) := LgLfh(x) = J(q)M−1
a (q)Ba(q)

(13)

2.3. Control objectives and mathematical background
The following tracking problem is addressed in this paper:

Definition 1. Given a smooth bounded desired trajectory yd(t) : [0, ∞) → �m+s+n, which is
created by a reference model whose dynamic equation is given by

ẋd(t) =
[

H(qvd) vd

0

]
+

[
0
Ip

]
τ ad, yd(t) = h(ηd(t)), (14)

the control objective of this paper is to design a feedback control law for a type (m,s) WMM system
(1)–(5) such that it makes the tracking errors, e(t) := y(t) − yd(t) ∈ �p, uniformly ultimately bounded
(UUB) and exponentially converge to a small neighborhood of the origin with the transient and
steady-state prescribed performance specifications in the presence of model uncertainties, unknown
parameters, and external disturbances.

Lemma 1.36: Assume that a rational function Hj(s) of the complex variable s = σ + jω is real
for real s and is not identically zero for all s. Let n* be the relative degree of Hj(s) with |n∗| ≤ 1. Then,
Hj(s) is strictly positive real (SPR) if and only if the following conditions hold: (i) Hj(s) is analytic
in Re [s] > 0; (ii) Re[Hj( jω)] > 0, ∀ω ∈ (−∞, ∞); (iii) when n∗ = 1, lim|ω|→∞ ω2Re[Hj( jω)] > 0;
when n∗ = −1, lim|ω|→∞ Hj( jω)/jω > 0.

Lemma 2.37: Consider a linear system ẋ = Ax + Bu, y = Cx. Then, this system is SPR if and
only if: (a) for any symmetric positive-definite Q, there exists a symmetric positive-definite P solution
of the Lyapunov equation ATP + PA = −Q, and (b) the matrices B and C satisfy BTP = C.

Lemma 3.38: The inequality h ‖ x‖ − xTh Tanh(νh x/γt) ≤ nγt holds for any γt > 0, and for
any ∀x ∈ �n and h ∈ � where ν is a constant that satisfies ν = e−(ν+1), that is, ν = 0.2785.

2.4. MLNN approximation
In this section, MLNNs are introduced to approximate unknown nonlinearities of the WMM. From
a review of refs. [37, 39], this technique has been effectively used to estimate unknown nonlinear
dynamics of robotic systems. Figure 2 shows a simple structure of a three-layer NN whose output
can be expressed in the following form:

yi =
Nh∑
j=1

[
wijσ̄

(
Ni∑

k=1

vjkxk + θvj

)
+ θwi

]
, i = 1, 2, . . . , No, (15)

where Nh, Ni, and No denote the number of hidden-layer, input-layer, and output-layer neurons,
respectively; wij and vjk show the NN weights; the parameters θwi and θvj denote threshold offsets;
and σ̄ (.) is a sigmoid activation function given by σ̄ (x) = 1/(1 + e−x) or σ̄ (x) = tanh(x). One may
write (15) in the following matrix form:

y = WTσ (VTx), (16)

where WT ∈ �No×(Nh+1) and VT ∈ �Nh×(Ni+1) are weight matrices whose first columns include thresh-
olds θwi and θvj, respectively. In addition, x = [

1, x1, . . . , xNi

]T ∈ �Ni+1, y = [
y1, y2, . . . , yNo

]T ∈
�No , and σ (VTx) =

[
1, σ̄ (VT

r1
x), . . . , σ̄ (VT

rNh
x)
]T ∈ �Nh+1, where VT

rj
, j = 1, 2, . . . , Nh, denotes j-th
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Fig. 2. Structure of an MLNN.

row of matrix VT . For a given continuous function f(x) : U → �No , where U ⊂ �Ni is a compact
set, there exist ideal weights, thresholds, and some number of hidden-layer neurons such that
f(x) = W∗Tσ (V∗Tx) + ew(x) where ew(x) represents NN functional approximation error vector that
is bounded over the compact set, that is, ‖ew(x)‖ ≤ Bw, ∀x ∈ U where Bw is an unknown posi-
tive constant. These ideal NN weight matrices W∗T ∈ �No×(Nh+1) and V∗T ∈ �Nh×(Ni+1)are defined
as follows: (

W∗, V∗) := arg min
(W, V)

{
sup
x∈U

∥∥WTσ (VTx) − f(x)
∥∥}

However, since the values of ideal NN weights W∗ and V∗ are not known, f(x) is replaced

by its estimation f̂(x) = Ŵ
T
σ (V̂

T
x) in most control applications where Ŵ and V̂ are estimated

NN weight matrices that are updated by some appropriate update rules that will be designed in
Section 3.

The following assumptions are presented to facilitate controller design and stability analysis:

Assumption 1. The following assumptions are essential to meet the above control objectives:

A1: Measurements of state vector x ∈ �p+n+s+3 are available for feedback in real time.
A2: The desired trajectory yd(t) is chosen such that yd(t), ẏd(t), and ÿd(t) are all bounded signals

in the sense that sup
t≥0

∥∥yd(t)
∥∥< Bdp, sup

t≥0

∥∥ẏd(t)
∥∥< Bdv, and sup

t≥0

∥∥ÿd(t)
∥∥< Bda, where Bdp, Bdv,

and Bda are unknown positive constants.
A3: The time-varying disturbance and unmodeled dynamics vector, that is, τ d(t) ∈ �m+s+n is

assumed to be bounded in the sense that ‖τ d(t)‖ ≤ Bτd where Bτd is an unknown positive
constant.

A4: The ideal NN weights are bounded on a compact set U ⊂ �Ni such that
∥∥W∗∥∥

F
≤ WM and∥∥V∗∥∥

F
≤ VM, where WM and VM are unknown positive constants.37, 39

2.5. Prescribed performance function
In order to guarantee some predefined specifications in the transient and steady-state performance
behavior of the control system, the prescribed performance control strategy21 is utilized in this paper.
For this purpose, the performance specifications are described by decreasing bounded and strictly
positive performance functions μj(t) : �+ → �+, j = 1, 2, . . . , p. Based on refs. [21–25], we may
obtain the prescribed performance control objectives if the following conditions hold for the tracking
errors, that is, ej(t), j = 1, 2, . . . , p:

− ajμj(t) < ej(t) < bjμj(t), j = 1, 2, . . . , p, ∀t > 0 (17)
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where aj, bj, j = 1, 2, . . . , p are some positive constants that are chosen by the expert designer and
μj(t) shows an exponentially decaying performance function that is selected as follows:21

μj(t) = (
μj0 − μj∞

)
exp(−λjt) + μj∞, (18)

where μj0, μj∞, and λj, j = 1, 2, . . . , p, denote positive parameters such that μj0 = μj(0), μj(t) ≤ μj0,
and μj∞ = limt→∞ μj(t). In (17), bjμj0 and −ajμj0 define the upper and lower bounds for the max-
imum overshoot and undershoot values of j-th element of tracking errors, respectively; λj defines
a lower bound for the convergence rate of j-th element of tracking errors; and μj∞ represents the
allowable steady-state tracking error. Therefore, if the above parameters are adjusted properly, the
specifications of the steady-state and transient performance can be determined in advance. In order
to obtain the prescribed performance for tracking errors ej(t), j = 1, 2, . . . , p, a smooth, strictly
monotonic increasing error transformation Sj is introduced to transform the constrained errors ej(t),
j = 1, 2, . . . , p, to unconstrained ones, which are denoted by εj(t), j = 1, 2, . . . , p, in the sense that
−aj < Sj(εj) < bj, ∀εj ∈ L∞, lim

εj→+∞ Sj(εj) = bj, and lim
εj→ −∞ Sj(εj) = −aj. Therefore, we have

ej(t) = μj(t)Sj
(
εj(t)

)
, j = 1, 2, . . . , p (19)

From the fact that Sj(εj) is smooth strictly monotonic increasing transformation and that μj(t) ≥
μj∞ > 0 from (18), the inverse transformation exists and is given by

εj(t) := Tj
(
êj(t)

)= S−1
j

(
êj(t)

) : �j → �, j = 1, 2, ..., p (20)

where êj(t) := ej(t)/μj(t) defines j-th normalized element of the constrained tracking error vector,
�j :=

{
êj(t) : êj ∈

(−aj, bj
)}

, Tj(0) = 0, j = 1, 2, ..., p. If −ajμj(0) < ej(0) < bjμj(0), and the tracking
controller is designed such that it can guarantee εj(t) ∈ L∞, ∀t ≥ 0, then −aj < Sj(εj) < bj or êj(t) ∈
�j, and thus, the constrained errors ej(t), j = 1, 2, . . . , p, satisfy (17). Also, if limt→∞ εj(t) = 0, we
get limt→∞ ej(t) = 0, which leads to the control objectives of Definition 1. To design the prescribed
performance controller, we need to differentiate (20) with respect to time:

ε̇j(t) := 1

μj(t)

∂Tj(êj(t))

∂ êj(t)

(
ėj(t) − μ̇j(t)

μj(t)
ej(t)

)
, j = 1, 2, . . . , p (21)

which can be stated in the following compact form:

ε̇(t) = RT ė(t) + Φe(t), (22)

where ε := [ε1, ε2, . . . , εp]T and e := [e1, e2, . . . , ep]T , Φ = RTΛ, RT , and Λ are defined as

RT = diag

[
1

μ1

∂T1(ê1(t))

∂ ê1(t)
,

1

μ2

∂T2(ê2(t))

∂ ê2(t)
, . . . ,

1

μp

∂Tp(êp(t))

∂ êp(t)

]
, (23)

Λ = diag

[
− μ̇1(t)

μ1(t)
, − μ̇2(t)

μ2(t)
, . . . , − μ̇p(t)

μp(t)

]
, (24)

From a review of ref. [22], an example of error transformation (20) is given by:

εj := Tj(êj(t)) = 1

2pj
ln

(
bjêj(t) + ajbj

)− 1

2pj
ln

(
ajbj − ajêj(t)

)
, (25)

In the next section, main results of this paper are presented.

3. Main Results

3.1. Controller design
In this section, an adaptive neural feedback linearizing controller is proposed for the general class of
type (m,s) mobile manipulators with a prescribed performance. From (12), the following nonlinear
control law is introduced:
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τ a = D̂
−1

(x)τ �, (26)

where τ � is a control law that is designed in the sequel, and D̂(x) shows the best approximation of
D(x), which is guessed by the expert designer. The substitution of (26) into (12) leads to:

ÿ = τ � + Lξ Lfh(x) + LηLfh(x)

+ (∂(J(q)v)/∂q) H(qv)v +
(

D(x)D̂
−1

(x) − Ip

)
τ �

(27)

From (22), one obtains:

ė(t) = R−1
T ε̇(t) − R−1

T Φe(t) (28)

Then, the time derivative of (22) and the substitution of (28) gives:

ε̈(t) = RT ÿ(t) − RT ÿd(t) + (
ṘT + Φ

)
R−1

T ε̇(t) − (
ṘT + Φ

)
R−1

T Φe(t) + Φ̇e(t), (29)

By replacing (27) in (29), one gets:

ε̈(t) = RTτ �(t) − RT ÿd(t) + N(xw) + RTLηLfh(x), (30)

where N(xw) includes uncertain nonlinearities given by

N(xw) := RTLξ Lf h(x) + (
ṘT + Φ

)
R−1

T ε̇(t) − (
ṘT + Φ

)
R−1

T Φe(t) + Φ̇e(t)

+ RT (∂(J(q)v)/∂q) H(qv)v + RT

(
D(x)D̂

−1
(x) − Ip

)
τ �

(31)

Then, the controller τ � is proposed as follows:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

τ �(t) = ÿd(t) + τPID(t) − τNN(t) − τARC(t),

τPID = −R−1
T KP ε(t) − R−1

T KI
∫ t

0 ε(τ ) dτ − R−1
T KD ε̇(t),

τNN = R−1
T Ŵ

T
σ (V̂

T
xw) + knR−1

T

(∥∥∥Ŵ
T
σ ′(V̂

T
xw)

∥∥∥2

F
‖xw‖2 +

∥∥∥σ ′(V̂
T
xw)V̂

T
xw

∥∥∥2
)

Z,

τARC = R−1
T Yα̂ Tanh

(
νYα̂Z/γt

)
,

(32)

where KP, KI, KD ∈ �p×p denote PID gains; Z(t) is defined in the sequel; and Y is given by

Y(e, μ) := [‖RT(e, μ)‖ , 1], (33)

In (32), Ŵ, V̂, and α̂ are tuned online by the following adaptive laws:

˙̂W = ProjŴ

(
Γ W

(
σ (V̂

T
xw) − σ ′(V̂

T
xw)V̂

T
xw

)
ZT − δWΓ W Ŵ

)
, Ŵ(0) ∈ �W, (34)

˙̂V = ProjV̂

(
Γ VxwZTŴ

T
σ ′(V̂

T
xw) − δV Γ V V̂

)
, V̂(0) ∈ �V , (35)

˙̂α = Projα̂
(
Γ α YT ‖Z(t)‖ − δαΓ α (α̂ − α0)

)
, α̂(0) ∈ �α, (36)

In the above equations, the matrices Γ W ∈ �(Nh+1)×(Nh+1), Γ V ∈ �(Ni+1)×(Ni+1), and Γ α ∈
�2×2 represent adaptation gains that adjust the learning rate; δW, δV , δα ∈ �+ denote
small positive design parameters; and α0 is a priori estimation of α. Moreover, �W :={

Ŵ ∈ �(Nh+1)×No : tr
{

Ŵ
T
Ŵ
}

≤ Wm

}
, �V :=

{
V̂ ∈ �(Ni+1)×Nh : tr

{
V̂

T
V̂
}

≤ Vm

}
, �α := {

α̂ ∈ �3 :∥∥α̂∥∥≤ αm
}
, and Wm, Vm and αm are positive constants. By employing the universal approximation

property of MLNNs, unknown nonlinearity N(xw) in (30) may be expressed as:

N(xw) := W∗Tσ (V∗Txw) + ew(xw), (37)

where xw := [1, xT , eT , ėT , τ T
� , ε̇T , μT , μ̇T , μ̈T ]T and ‖ew(xw)‖ ≤ Bw. From refs. [37, 39], if weight

estimation errors are defined as W̃ = W∗ − Ŵ and Ṽ = V∗ − V̂, it is easy to prove that:
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W∗Tσ (V∗Txw) − Ŵ
T
σ (V̂

T
xw) + ew(xw) = W̃

T
(
σ (V̂

T
xw) − σ ′(V̂

T
xw)V̂

T
xw

)
+Ŵ

T
σ ′(V̂

T
xw)Ṽ

T
xw + n,

(38)

where σ ′ is given by

σ ′(V̂
T
xw) = [0Nh×1, diag[σ ′

1, σ ′
2, . . . , σ ′

Nh
]]T ∈ �(Nh+1)×Nh (39)

with σ ′
j = dσ̄ (s)/ds|s=V̂T

rj
xw

, j = 1, 2, . . . , Nh, and

n = W̃
T
σ ′(V̂

T
xw)V∗Txw + W∗TO(Ṽ

T
xw)2 + εw(xw), (40)

which is bounded in the following form:

‖n‖ ≤ ∥∥V∗∥∥
F

∥∥∥Ŵ
T
σ ′(V̂

T
xw)

∥∥∥
F

‖xw‖ + ∥∥W∗∥∥
F

∥∥∥σ ′(V̂
T
xw)V̂

T
xw

∥∥∥+ a, (41)

where a is a positive constant. For an activation function in the form of σ̄ (x) = 1/(1 + e−x), it is easy

to prove that σ ′
j (V̂

T

rj
xw) = σ̄ (V̂

T

rj
xw)[1 − σ̄ (V̂

T

rj
xw)], which gives the following result:

σ ′(V̂
T
xw) = [0Nh×1, Σ V̂ [INh − Σ V̂ ]]T , (42)

where Σ V̂ is defined as follows:

Σ V̂ = diag
[
σ̄ (V̂

T

r1
xw), σ̄ (V̂

T

r2
xw), ..., σ̄ (V̂

T

rNh
xw)

]
. (43)

By replacing (32) into (30), one obtains:

ε̈(t) = −KP ε(t) − KD ε̇(t) − KI

∫ t

0
ε(τ ) dτ + uR(t), (44)

uR = −Ŵ
T
σ (V̂

T
xw) − kn

(∥∥∥Ŵ
T
σ ′(V̂

T
xw)

∥∥∥2

F
‖xw‖2 +

∥∥∥σ ′(V̂
T
xw)V̂

T
xw

∥∥∥2
)

Z

−Yα̂ Tanh
(
νYα̂Z/γt

)+ N(xw) + RTLηLf h(x),

(45)

whose j-th element gives the following error equation:

ε̈j + kdj ε̇j + kpj εj + kij

∫ t

0
εj(τ ) dτ = uR j, j = 1, 2, . . . , p (46)

To drive online update rules, the following filtered error signal is defined for j-th output:

zj(t) = ε̇j(t) + β1jεj(t) + β2j

∫ t

0
εj(τ ) dτ, j = 1, 2, . . . , p (47)

The factors β1j and β2j are selected such that the transfer function from the output zj(t) to the input
uR j is SPR:

Hj(s) = (s2 + β1js + β2j)/(s
3 + kdj s2 + kpjs + kij) (48)

By applying SPR conditions of Lemma 1 to (48), it is easy to show that Hj(s) is SPR if kpj < k2
dj,

kpj kdj > kij, k2
pj > 2kij kdj, β1j = kpj/kdj, and β2j = kij/kdj. According to Lemma 2, there subsequently

exist positive definite matrices Pj and Qj such that AT
j Pj + PjAj = −Qj and PjBj = CT

j where matrices

Aj, Bj and Cj are defined by minimal state-space realization of (46) and (47) as Ẋj = AjXj + BjuR j

and zj = CjXj where Xj =
[∫ t

0 εj(τ ) dτ, εj, ε̇j
]T

is the state variable and
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Fig. 3. Block diagram of the proposed WMM control system.

Aj =
⎡
⎣ 0 1 0

0 0 1
−kij −kpj −kdj

⎤
⎦, Bj =

⎡
⎣0

0
1

⎤
⎦, Cj =

[
β2j β1j 1

]
. (49)

As a result, the state space representation of the entire system is written as:{
Ẋ = AX + BuR,

Z = CX = ε̇ + β1ε + β2

∫ t
0 ε(τ ) dτ ∈ �p

(50)

where A = diag[A1, A2, . . . , Ap], B = diag[B1, B2, . . . , Bp], and C = diag[C1, C2, . . . , Cp] are
block diagonal matrices, and X = [XT

1 , XT
2 , . . . , XT

p ]T , ε := [ε1, ε2, . . . , εp]T . Moreover, β1 :=
diag[β11, β12, . . . , β1p] and β2 := diag[β21, β22, . . . , β2p] denote controller gain matrices. Now, the
Lyapunov equation is expressed for the entire system as follows:

ATP + PA = −Q, PB = CT , (51)

where P = diag[P1, P2, . . . , Pp] and Q = diag[Q1, Q2, . . . , Qp]. Figure 3 illustrates a block diagram
of the proposed adaptive NN control system. As shown in this figure, the inner loop feedback con-
troller (26) partially linearizes the WMM nonlinear dynamics. However, since the main parts of
unknown nonlinearities could not be cancelled in the inner loop, the effective combination of MLNN
and ARC blocks compensates them in the outer loop. According to Fig. 3, the constrained errors, that
is, e and ė, are transformed into the unconstrained ones, that is, ε and ε̇, by the transformation blocks
T and Ṫ, which are employed to generate the PID part of the controller, that is, τPID(t). Finally, the
outer loop controller, that is, τ �(t) in (32), is generated by the sum of PID, ARC, MLNN, and the
desired acceleration ÿd(t).

3.2. Stability analysis
In this section, the following theorem is presented to summarize the principal results of the high-
performance tracking control of a general class of WMMs:

Theorem 1. Consider the mathematical motion model of type (m,s) WMMs that are denoted by
(1)–(5). Provided that the reference trajectory yd(t) is selected to be bounded ∀t > 0, if Assumptions
A1–A4 hold, the gain conditions kpj < k2

dj, kpj kdj > kij, k2
pj > 2kij kdj, kn > 0.5, β1j = kpj/kdj,

and β2j = kij/kdj are fulfilled, and the initial tracking errors satisfy −ajρj(0) < ej(0) < bjρj(0),
j = 1, 2, . . . , p, then the following controller
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ a = D̂
−1

(x)
(

ÿd(t) − R−1
T

(
uPID(t) + Ŵ

T
σ (V̂

T
xw) + knhZ + Yα̂ Tanh

(
νYα̂Z/γt

)))
,

h =
∥∥∥Ŵ

T
σ ′(V̂

T
xw)

∥∥∥2

F
‖xw‖2 +

∥∥∥σ ′(V̂
T
xw)V̂

T
xw

∥∥∥2
,

uPID = KP ε(t) + KI
∫ t

0 ε(τ ) dτ + KD ε̇(t),
˙̂W = ProjŴ

(
Γ W

(
σ (V̂

T
xw) − σ ′(V̂

T
xw)V̂

T
xw

)
ZT − δWΓ W Ŵ

)
, Ŵ(0) ∈ �W

˙̂V = ProjV̂
(
Γ VxwZTŴ

T
σ ′(V̂

T
xw) − δV Γ V V̂

)
, V̂(0) ∈ �V

˙̂α = Projα̂
(
Γ α YT ‖Z(t)‖ − δαΓ α (α̂ − α0)

)
, α̂(0) ∈ �α

(52)

ensures that: (i) all the signals in the closed-loop control system are bounded; (ii) the tracking
errors

∫ t
0 εj(τ ) dτ , εj, and ε̇j, j = 1, 2, . . . , p, are UUB and εj exponentially converges to a small

ball containing the origin; and (iii) the tracking errors ej(t), j = 1, 2, . . . , p, are UUB and exponen-
tially converge to neighborhoods of the zero with prescribed transient and steady-state performance
specifications.

Proof. Consider the following Lyapunov function:

V = 0.5
(

XTPX + tr
{

W̃
T
Γ −1

W W̃
}

+ tr
{

Ṽ
T
Γ −1

V Ṽ
}

+ α̃TΓ −1
α α̃

)
, (53)

where α̃ = α − α̂. By recalling (45), (50), and (51), the time derivative of (53) yields:

V̇ = 0.5XT
(
ATP + PA

)
X + XTPBuR − tr

{
W̃

T
Γ −1

W
˙̂W
}

− tr
{

Ṽ
T
Γ −1

V
˙̂V
}

− α̃
T
Γ −1

α
˙̂α

= −0.5XTQX − ZTYα̂ Tanh
(
νYα̂Z/γt

)+ ZT
(

WTσ (VTxw) − Ŵ
T
σ (V̂

T
xw) + ew

)
−kn

(∥∥∥Ŵ
T
σ ′(V̂

T
xw)

∥∥∥2

F
‖xw‖2 +

∥∥∥σ ′(V̂
T
xw)V̂

T
xw

∥∥∥2
)

‖Z‖2 + ZTRTLηLf h(x)

−tr
{

W̃
T
Γ −1

W
˙̂W
}

− tr
{

Ṽ
T
Γ −1

V
˙̂V
}

− α̃
T
Γ −1

α
˙̂α

(54)

Considering the adaptation rules in (34)–(36), applying ((38) and recalling the properties of the
projection-type adaptive laws from refs. [36, 39], (54) can be written as:

V̇ ≤ −0.5XTQX − ZTYα̂ Tanh
(
νYα̂Z/γt

)+ ZT
(
n + RTLηLfh(x)

)
−kn

(∥∥∥Ŵ
T
σ ′(V̂

T
xw)

∥∥∥2

F
‖xw‖2 +

∥∥∥σ ′(V̂
T
xw)V̂

T
xw

∥∥∥2
)

‖Z‖2 + δW tr
{

W̃
T

Ŵ
}

+δV tr
{

Ṽ
T

V̂
}

− α̃TΓ −1
α Projα̂

(
Γ α YT ‖Z(t)‖)+ δαα̃T

(α̂ − α0)

(55)

By recalling (40), Assumptions A3 and A4, the structural properties of WMMs29 and the fact∥∥LηLf h(x)
∥∥≤ β, where β is an unknown positive constant, it is easy to prove that

ZTn + ZTRTLηLfh(x) ≤ 0.5
∥∥∥Ŵ

T
σ ′(V̂

T
xw)

∥∥∥2

F
‖xw‖2 ‖Z‖2 + 0.5

∥∥∥σ ′(V̂
T
xw)V̂

T
xw

∥∥∥2 ‖Z‖2

+ ‖Z‖ Yα + 0.5
∥∥W∗∥∥2

F + 0.5
∥∥V∗∥∥2

F

(56)

where Y := [‖RT‖ , 1]. By considering (56), α = α̃ + α̂, taking the following into account

δW tr{W̃T
Ŵ} ≤ −(1 − 0.5/κ2)δW

∥∥∥W̃
∥∥∥2

F
+ 0.5κ2δW

∥∥W∗∥∥2
F

, (57)

δV tr
{

Ṽ
T
V̂
}

≤ −(1 − 0.5/κ2)δV

∥∥∥Ṽ
∥∥∥2

F
+ 0.5κ2δV

∥∥V∗∥∥2
F , (58)

δαα̃T
(α̂ − α0) ≤ −δα(1 − 0.5/κ2) ‖α̃‖2 + 0.5δακ2 ‖α − α0‖2, (59)
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and further simplifications, one obtains:

V̇ ≤ −0.5λmin (Q) ‖X‖2 + ‖Z‖ Yα̂ − ZTYα̂ Tanh
(
νYα̂Z/γt

)
− (kn − 0.5)

(∥∥∥Ŵ
T
σ ′(V̂

T
xw)

∥∥∥2

F
‖xw‖2 +

∥∥∥σ ′(V̂
T
xw)V̂

T
xw

∥∥∥2
)

‖Z‖2

+ ‖Z‖ Yα̃ − α̃TΓ −1
α Projα̂

(
Γ α YT ‖Z(t)‖)− (1 − 0.5/κ2)δW

∥∥∥W̃
∥∥∥2

F

−(1 − 0.5/κ2)δV

∥∥∥Ṽ
∥∥∥2

F
− δα(1 − 0.5/κ2) ‖α̃‖2 + 0.5κ2δW

∥∥W∗∥∥2
F

+0.5κ2δV

∥∥V∗∥∥2
F + 0.5

∥∥W∗∥∥2
F + 0.5

∥∥V∗∥∥2
F + 0.5δακ2 ‖α − α0‖2

(60)

By recalling the fact that Yα̂ ‖Z‖ − ZTYα̂ Tanh
(
νYα̂Z/γt

)≤ pγt, ∀ μt > 0 from Lemma 3, choos-
ing kn > 0.5, and considering the projection technique properties,36, 39 one obtains the following
inequality:

V̇ ≤ −0.5λmin (Q) ‖X‖2 − cw

Nh+1∑
j=1

No∑
k=1

∣∣w̃jk

∣∣2 − cv

Ni+1∑
j=1

Nh∑
k=1

∣∣ṽjk

∣∣2 − cα ‖α̃‖2 + pγt + ρ, (61)

where cw = (1 − 0.5/κ2)δW , cv = (1 − 0.5/κ2)δV and cα = δα(1 − 0.5/κ2) and

ρ := 0.5
(
κ2δW + 1

) ∥∥W∗∥∥2
F

+ 0.5
(
κ2δV + 1

) ∥∥V∗∥∥2
F

+ 0.5δακ2 ‖α − α0‖2 , (62)

which can be written as follows:

V̇(t) ≤ −cm ‖E(t)‖2 + pγt + ρ, (63)

where cm := min {0.5λmin (Q) 1, cw, cv, cα}, E := [XT , w̃11, . . . , w̃(Nh+1)No, ṽ11, . . . , ṽ(Ni+1)Nh, α̃T ]T .
On the contrary, the Lyapunov function (53) is bounded as follows:

λmin(A) ‖E(t)‖2 ≤ V(t) ≤ λmax(A) ‖E(t)‖2, (64)

where A := 0.5 blockdiag{P, Γ −1
W , Γ −1

V , Γ −1
α }. From (64), inequality (63) becomes

V̇(t) + cmV(t)/λmax(A) ≤ pγt + ρ (65)

Solving the differential inequality (65) yields

0 ≤ V(t) ≤ V(0)e−cmt/λmax(A) + (λmax(A)(pγt + ρ)/cm)
(
1 − e−cmt/λmax(A)

)
, ∀t ∈ [0, ∞) (66)

From (66), it is clear that the Lyapunov function is bounded as follows:

V(t) ≤ max {V(0), λmax(A)(pγt + ρ)/cm}, ∀t ≥ 0 (67)

which together with (64) gives the following result:

‖E(t)‖ ≤ (max {V(0), λmax(A)(pγt + ρ)/cm} /λmin(A))1/2 (68)

Therefore, inequality (66) implies that V̇(t) is strictly negative outside the compact set

SE = {
E(t)

∣∣‖E(t)‖ ≤ (max {V(0), λmax(A)(pγt + ρ)/cm} /λmin(A))1/2 } (69)

Thus, ‖E(t)‖ decreases with time whenever E(t) is outside the compact set SE, and hence ‖E(t)‖
is UUB. This discussion implies that tracking errors are UUB and exponentially converge to a small
area containing the origin and ε,

∫ t
0 ε(τ ) dτ, ε̇, w̃11, . . . , w̃(Nh+1)No, ṽ11, . . . , ṽ(Ni+1)Nh, α̂ ∈ L∞.

Since −ajμj(0) < ej(0) < bjμj(0), j = 1, 2, . . . , p, ε(t) ∈ L∞, ∀t ≥ 0, and ε(t) converge to a small
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region around zero, then the tracking errors ej(t), j = 1, 2, . . . , p, satisfy (17) and converge to small
regions around zero with prescribed performance specifications. This completes the proof.

3.3. Parameter tuning guidelines
One of the main challenges in achieving a desirable performance of the proposed control system is
parameter tuning. The adjustment of controller parameters is usually carried out by the trial-and-
error method based on some rules, which may be extracted from the stability analysis and theoretical
developments. The following guidelines are suggested for parameter tuning:

(i) The PPF parameters aj, bj, and μj0, j = 1, 2, . . . , p, are initially chosen large enough to ensure
that −ajμj0 < ej(0) < bjμj0, j = 1, 2, . . . , p, ∀t > 0.

(ii) The convergence speed λj is initially set to a small value and then increased gradually. The
parameters μj∞, j = 1, 2, . . . , p, determine the bounds of the steady-state errors, which are
adjusted to large values and then reduced.

(iii) The PID gains kpj, kij, and kdj, j = 1, 2, . . . , p, should be tuned such that kpj < k2
dj, kpj kdj > kij,

and k2
pj > 2kij kdj, which ensures that Hj(s) in (48) is SPR.

(iv) A larger adaptive gain Γ α in (36) enhances parameter adaptation, which, in turn, improves the
robustness and tracking accuracy at the expense of a high control action and more chattering.
However, the very large values of Γ α may lead to instability.

(v) The parameter γt in the adaptive robust controller τARC in (32) is used to make a trade-off
between final tracking accuracy and control signal smoothness. High values of γt make control
signals smoother at the expense of a larger ultimate bound and less tracking accuracy based on
(68).

(vi) The hidden layer neuron number is initially set to be small. Then, the neuron number is gradu-
ally increased to get a desirable performance. When the tracking performance is not improved
anymore, the increment of neuron number will be stopped. It should be noted that a very large
number of neurons might lead to more computational complexity, and tracking performance
may be reduced due to an overestimation.

(vii) The larger values of Γ W and Γ V in NN adaptation laws (34) and (35) enhance the learning
rate. However, high adaptation gains may lead to instability.

(viii) The small values of δW, δV and δα reduce ρ in (62) that increases the final tracking accuracy at
the expense of the smaller robustness of adaptive rules (34)–(36). Therefore, a trade-off may
be conducted between robustness and final tracking accuracy. The initial value of the weight
matrix Ŵ is set to zero and V̂(0) is randomly chosen.

3.4. Discussion
In the previous sections, a tracking controller is presented for all types of WMMs based on the
approximation-based feedback linearization technique. From a comparative viewpoint, most of the
available research works, including refs. [1–20], only concentrated on tracking control design for a
special type of WMMs, such as type (2,0) WMMs, that is, a mobile manipulator with a differential
drive mobile platform, or a type (3,0) WMM, that is, a mobile manipulator with an omnidirec-
tional mobile platform,12 while this paper addresses the tracking problem of a general class of n-link
WMMs with a type (m,s) mobile platform. As frequently reported in the literature, approximation-
based techniques, including robust and adaptive laws2–9 and Fuzzy and neural networks,10–16 have
been widely used to deal with parametric and non-parametric uncertainties. However, it is very diffi-
cult to acquire a desired transient performance due to parameter adaptation and robust control action
in previous works. In contrast to refs. [2–20], a neural adaptive robust tracking controller with a guar-
anteed prescribed transient and steady-state performance is designed for WMMs for the first time by
employing the PPF technique.21, 22 This design strategy helps the user to freely adjust the maxi-
mum overshoot/undershoot, convergence rate, and final tracking accuracy in advance. The tracking
performance of the proposed controller is illustrated in the next section by numerical simulations.

4. Numerical Simulations
In this section, the tracking performance of the proposed controller is evaluated for a type (2,0) WMM
illustrated by Fig. 4. The generalized coordinates of the WMM are shown by q = [xo, yo, ϕ, θ1, θ2]T .
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Fig. 4. Planar configuration of a type (2,0) two-link WMM.

The motion model of the robot, its parameter definitions, and their attributed values are obtained
from ref. [40]. It is assumed that the mobile manipulator is equipped with a localization and mapping
algorithm to estimate its posture in the environment.41, 42

The controller parameters are chosen based on gain conditions of Theorem 1 and trial
and error. In this simulation, parameters KP = diag[50, 50, 50, 50], KD = diag[50, 50, 50, 50],
KI = diag[4, 4, 4, 4], β1 = diag[1, 1, 1, 1], β2 = 0.08diag[1, 1, 1, 1], a1 = a2 = b1 = b2 = 4, a3 =
a4 = b3 = b4 = 2.5, pj = 2, j = 1, . . . , 4, μj0 = 1, j = 1, . . . , 4, μj∞ = 0.05, j = 1, . . . , 4, and λj =
0.2, j = 1, . . . , 4 are selected to demonstrate controller performance. An MLNN with param-
eters Nh = 6, Ni = 15, No = 4, Γ W = 2I4, Γ V = 2I4, δW = δV = 0.005, and kn = 1 are used. For
simplicity, the projection is not applied to this simulation. The adaptive robust controller
parameters are also set to Γ α = 0.25diag[1, 10−6], δα = 0.25, and γt = 200. The signal τ di(t) =
0.25 sin(0.05t)[1, 1, 1, 1]T + 0.8sign(v(t)) is used to simulate external disturbance. The torque sig-
nals are saturated within |τaj| ≤ 20 Nm, j = 1, . . . , 4 to simulate actuator saturation. The output
vector is chosen as y = [(ζ + RT(ϕ)d)T , qT

m]T for a type (2,0) WMM such that

d = [
xb + �d1 cos(θd1) + �d2 cos(θd1 + θd2), yb + �d1 sin(θd1) + �d2 sin(θd1 + θd2)

]T
, (70)

where �d1 = 0.514 m, �d2 = 0.362 m, and θd1 = θd2 = π/4. The initial posture of the robot is set to
q1(0) = [2, 0, 0, −π/4, −π/4]T . Figures 5–9 demonstrate the tracking performance of a desired
circular trajectory. Figure 5 shows the x–y plot of WMM trajectory and its desired trajectory. It
illustrates that the mobile manipulator end effector successfully tracks the desired trajectory.

The time evolution of the constrained tracking errors along with their prescribed performance
bounds are demonstrated by Fig. 6. It is seen that the tracking errors lie within PPFs to satisfy
our prescribed overshoot, convergence rate, and ultimate accuracy in this simulation. Figure 7 also
shows that transformed errors are bounded and converge to neighborhoods of zero in the pres-
ence of model uncertainties and external disturbances. The control signals are also illustrated by
Fig. 8. Figure 9 demonstrates Frobenius norms of estimated weight matrices and parameter esti-
mates. It should be noted that tracking performance could be improved by better tuning of control
parameters.

In order to further evaluate the proposed controller performance, a comparative simulation is car-
ried out. For this purpose, a passivity-based adaptive robust controller is designed as follows, inspired
from refs. [37, 43]:
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Fig. 5. x–y plot of the WMM and desired trajectories (left) and its magnified view (right).
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Fig. 6. Time evolution of constrained tracking errors (left) and their magnified views (right).

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

τ a(t) = B−1(q)
(
−Ks(t) − (Yθ̂)2s(t)/(Yθ̂ ‖s(t)‖ + γt)

)
,

˙̂
θ(t) = Γ θYT ‖s(t)‖ − σ θ̂(t),

Y =
[
1,

∥∥ẏr(t)
∥∥, ∥∥ẏr(t)

∥∥2
,
∥∥ÿr(t)

∥∥],
s(t) = ẏ(t) − ẏr(t) = ė(t) + Λ0e(t) + Λ1

∫ t
0 e(τ )dτ

ẏr(t) = ẏd(t) − Λ0e(t) − Λ1
∫ t

0 e(τ )dτ,

(71)

where B(q) = J−T(q)Ba(q), J(q), and Ba(q) are defined in Section 2; Λ0 = diag[10, 10, 0.5, 0.5],
Λ1 = diag[0.1, 0.1, 0.05, 0.05], and K = diag[50, 50, 2.5, 2.5] are positive gain matrices. In addi-
tion, γt = 1000, Γ θ = 0.005diag[5, 1, 0.01, 0.1], and σ = 0.5Γ θ . For an impartial comparison, both
controllers are tuned carefully to obtain their best performance. The parameters of the proposed
controller are similar to the previous simulation except that μj∞ = 0.025 and λj = 0.3, j = 1, . . . , 4.
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Fig. 9. The Frobenius norms of NN weights and parameter estimates.

Other simulation conditions are intact. The simulation results are illustrated by Fig. 10. As shown
in this figure, the proposed control system demonstrates a better performance in both transient and
steady-state responses. More simulations with different adjustments verify the performance of the
proposed control system.

5. Concluding Remarks
In this paper, an adaptive NN tracking controller is developed based on feedback linearization
technique. By introducing a proper set of output equations, an input–output model of the gen-
eral type (m,s) WMMs is presented. Then, the prescribed performance technique is utilized to
satisfy the predefined transient and steady-state response specifications of the tracking control sys-
tem. The projection-type MLNNs and adaptive techniques are used to compensate all types of
model uncertainties. The Lyapunov direct method is used to show that the tracking errors converge
to a neighborhood of the origin with a prescribed performance. Numerical simulation results are
presented to show the effective performance of the tracking control system for WMMs.
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Fig. 10. Comparative simulation results of the proposed controller (red solid signal) and the controller (71)
(blue dashed-line signal): (a) the whole error signal, (b) the transient response, and (c) steady-state response.

Future researches can be devoted to the design of an output feedback controller for type (m,s)
WMMs as well as for the experimental evaluation of the proposed control system on a real large-scale
mobile manipulator. It should be noted that the dynamic model of a small-scale mobile manipulator
is not considerable in practice, and the kinematic controllers are sufficient for their motion control
according to the literature and to the best of our knowledge. In contrast, the effects of inertia, Coriolis,
centripetal and gravity forces, and torques in the large-scale mobile manipulators are significant in
practice. Therefore, the proposed controller definitely shows its effectiveness on large-scale mobile
manipulators since the controller is capable of compensating the dynamic model nonlinearities due
to the neural adaptive robust control design that would preserve the prescribed performance.
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